Optimization of Gas Turbine Combustor Mixing for Improved Exit Temperature Profile
نویسندگان
چکیده
منابع مشابه
Parametric Modelling System of Gas Turbine Combustor
Original scientific paper In the numerical simulation research of gas turbine combustor, there are plenty repetitive operations such as modelling and meshing. Parametric design idea is about simplifying it. This paper establishes a parametric modelling system of gas turbine combustor, mainly for the flame tube components, which includes parametric modelling and simple mesh generation. Taking a ...
متن کامل3-D Numerical Simulation of Gas Turbine Combustor
This paper presents a numerical solution for a changing combustor geometry. The effects of the geometric change on the main parameters of the chamber are considered. For this purpose the original geometry and the new one are simulated numerically by a 3-D CFD code and the results are compared. Finally, comments are presented regarding this change. A model is used for turbulence modeling and a...
متن کامل3-D Numerical Simulation of Gas Turbine Combustor
This paper presents a numerical solution for a changing combustor geometry. The effects of the geometric change on the main parameters of the chamber are considered. For this purpose the original geometry and the new one are simulated numerically by a 3-D CFD code and the results are compared. Finally, comments are presented regarding this change. A model is used for turbulence modeling and a...
متن کاملAcoustic Behavior of a Partially-Premixed Gas Turbine Model Combustor
Combustion instabilities in gas turbine engines often give rise to acoustic resonances. These resonances occur as manifestations of different acoustic modes, of which a single or multiple modes may be present. In this work, the acoustic behavior of a model gas turbine combustor, developed at DLR Stuttgart by Meier, was investigated using both syn(thetic) gas and standard hydrocarbon fuels. Syng...
متن کاملLarge Eddy Simulation of a Gas Turbine Model Combustor
The current design of gas-turbine (GT) systems is driven by the need for increased powerdensities, improved fuel-efficiencies, and reduced life cycle costs and environmental impact. Computational techniques have the potential for providing valuable information for the design of GT combustion systems, if adequate models are available. Over recent years, remarkable progress has been made in the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Heat Transfer Engineering
سال: 2010
ISSN: 0145-7632,1521-0537
DOI: 10.1080/01457630903375319